domingo, 2 de mayo de 2010

LEY DE FARADAY

LEY DE FARADAY


EN ESTE BLOG SE UNCUENTRA UNA GRAN INFORMACION RELACIONADA CON LA LEY DE LENZ Y DE FARADAY, ESPERO QUE SEA DE GRAN IMPORTANCIA Y LES PUEDA AYUDAR A SOLUCIONAR LAS INQUIETUDES QUE TIENEN. Y DE PASO APRENDER Y REFORZAR LOS CONOCIMIENTOS.

























LEY DE FARADAY

La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde:




\oint_C \vec{E} \cdot \vec{dl} = - \ { d \over dt }   \int_S   \vec{B} \cdot \vec{dA}



donde \vec{E} es el campo eléctrico, d\vec{l} es el elemento infinitesimal del contorno C, \vec{B} es la densidad de campo magnético y S es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de \vec{dA} están dadas por la regla de la mano derecha.


La permutación de la integral de superficie y la derivada temporal se puede hacer siempre y cuando la superficie de integración no cambie con el tiempo.

Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:



\nabla \times \vec{E} = -\frac{\partial \vec{B}} {\partial t}


Ésta es una de las ecuaciones de Maxwell, las cuales conforman las ecuaciones fundamentales del electromagnetismo. La ley de Faraday, junto con las otras leyes del electromagnetismo, fue incorporada en las ecuaciones de Maxwell, unificando así al electromagnetismo.


En el caso de un inductor con N vueltas de alambre, la fórmula anterior se transforma en:


Vε  =-N{d \Phi \over d t}


donde Vε es el voltaje inducido y dΦ/dt es la tasa de variación temporal del flujo magnético Φ. La dirección voltaje inducido(el signo negativo en la fórmula) se debe a la ley de Lenz.

LEY DE LENZ

Los estudios sobre inducción electromagnética, realizados por Michael Faraday nos indican que en un conductor que se mueva cortando las líneas de campo de un campo magnético se produciría un voltaje inducido (Vε) y si se tratase de un circuito cerrado se produciría una corriente inducida. Lo mismo sucedería si el flujo magnético que atraviesa al conductor es variable.

La Ley de Lenz nos dice que los voltajes inducidos serán de un sentido tal, que se opongan a la variación del flujo magnético que las produjo. Esta ley es una consecuencia del principio de conservación de la energía.

La polaridad de un voltaje inducido es tal, que tiende a producir una corriente, cuyo campo magnético se opone siempre a las variaciones del campo existente producido por la corriente original.

El flujo de un campo magnético uniforme a través de un circuito plano viene dado por:

 \Phi = B \cdot S \cdot \cos{\alpha},

donde:

  • Φ = Flujo magnético. La unidad en el SI es el weber (Wb).
  • B = Inducción electromagnética. La unidad en el SI es el tesla (T).
  • S = Superficie del conductor.
  • α = Ángulo que forman el conductor y la dirección del campo.

Si el conductor está en movimiento el valor del flujo será:

 d\Phi = B \cdot dS \cdot \cos{\alpha}.

En este caso la Ley de Faraday afirma que el Vε inducido en cada instante tiene por valor:

Vε  \ = - n\frac {d \Phi}{dt}

El valor negativo de la expresión anterior indica que el Vε se opone a la variación del flujo que la produce. Este signo corresponde a la ley de Lenz.

SITO DE INTERES

http://teleformacion.edu.aytolacoruna.es/FISICA/document/teoria/A_Franco/elecmagnet/fem/fem.htm

VIDEOS

http://www.youtube.com/watch?v=JmUSL2hNvmk

http://www.youtube.com/watch?v=jgpbp1ZOT24&feature=related

viernes, 30 de abril de 2010

EL TRANSFORMADOR

EL TRANSFORMADOR




























TRANSFORMADOR

Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de
hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.


Representación esquemática del transformador.
Si se aplica una
fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción electromagnética, la aparición de una fuerza electromotriz en los extremos del devanado secundario.
La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) .
La razón de la transformación (m) del voltaje entre el bobinado primario y el bobinado secundario depende de los números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario, en el secundario habrá el triple de tensión.

Esta particularidad se utiliza en la red de transporte de energía eléctrica: al poder efectuar el transporte a altas tensiones y pequeñas intensidades, se disminuyen las pérdidas por el efecto Joule y se minimiza el costo de los conductores.
Así, si el número de espiras (vueltas) del secundario es 100 veces mayor que el del primario, al aplicar una tensión alterna de 230
voltios en el primario, se obtienen 23.000 voltios en el secundario (una relación 100 veces superior, como lo es la relación de espiras). A la relación entre el número de vueltas o espiras del primario y las del secundario se le llama relación de vueltas del transformador o relación de transformación.
Ahora bien, como la
potencia de la electrica aplicada en el primario, en caso de un transformador ideal, debe ser igual a la obtenida en el secundario, el producto de la fuerza electromotriz por la intensidad (potencia) debe ser constante, con lo que en el caso del ejemplo, si la intensidad circulante por el primario es de 10 amperios, la del secundario será de solo 0,1 amperios (una centésima parte).

HISTORIA


Transformador de núcleo laminado mostrando el borde de las laminaciones en la parte superior de la unidad.
Primeros pasos: los experimentos con bobinas de inducción
El fenómeno de inducción electromagnética en el que se basa el funcionamiento del transformador fue descubierto por Michael Faraday en 1831, se basa fundamentalmente en que cualquier variación de flujo magnético que atraviesa un circuito cerrado genera una corriente inducida, y en que la corriente inducida sólo permanece mientras se produce el cambio de flujo magnético.
La primera "bobina de inducción" para ver el uso de ancho fueron inventadas por el Rev. Nicholas Callan College de Maynooth, Irlanda en 1836, uno de los primeros investigadores en darse cuenta de que cuantas más espiras hay en el secundario, en relación con el bobinado primario, más grande es el aumento de la FEM.
Los científicos e investigadores basaron sus esfuerzos en evolucionar las bobinas de inducción para obtener mayores voltajes en las baterías. En lugar de corriente alterna (CA), su acción se basó en un vibrante "do&break" mecanismo que regularmente interrumpido el flujo de la corriente directa (DC) de las pilas.
Entre la década de 1830 y la década de 1870, los esfuerzos para construir mejores bobinas de inducción, en su mayoría por ensayo y error, reveló lentamente los principios básicos de los transformadores. Un diseño práctico y eficaz no apareció hasta la década de 1880, pero dentro de un decenio, el transformador sería un papel decisivo en la “Guerra de Corrientes”, y en que los sistemas de distribución de corriente alterna triunfo sobre sus homólogos de corriente continua, una posición dominante que mantienen desde entonces.
En 1876, el ingeniero ruso Pavel Yablochkov inventó un sistema de iluminación basado en un conjunto de bobinas de inducción en el que el bobinado primario se conectaba a una fuente de corriente alterna y los devanados secundarios podían conectarse a varias “velas eléctricas” (lámparas de arco), de su propio diseño. Las bobinas utilizadas en el sistema se comportaban como transformadores primitivos. La patente alegó que el sistema podría, “proporcionar suministro por separado a varios puntos de iluminación con diferentes intensidades luminosas procedentes de una sola fuente de energía eléctrica”.
En 1878, los ingenieros de la empresa Ganz en Hungría asignaron parte de sus recursos de ingeniería para la fabricación de aparatos de iluminación eléctrica para Austria y Hungría.
En 1883, realizaron más de cincuenta instalaciones para dicho fin. Ofrecián un sistema que constaba de dos lámparas incandescentes y de arco, generadores y otros accesorios.
En 1882, Lucien Gaulard y John Dixon Gibbs expusieron por primera vez un dispositivo con un núcleo de hierro llamado "generador secundario" en Londres, luego vendió la idea de la compañía Westinghouse de Estados Unidos.
También fue expuesto en Turín, Italia en 1884, donde fue adaptado para el sistema de alumbrado eléctrico.
El nacimiento del primer transformador
Entre 1884 y 1885, los ingenieros húngaros Zipernowsky, Bláthy y Deri de la compañía Ganz crearon en Budapest el modelo “ZBD” de transformador de corriente alterna, basado en un diseño de Gaulard y Gibbs (Gaulard y Gibbs sólo diseñaron un modelo de núcleo abierto). Descubrieron la fórmula matemática de los transformadores:
(donde Vs es el voltaje en el secundario y Ns es el numero de espiras en el secundario, Vp y Np se corresponden al primario)
Su solicitud de patente hizo el primer uso de la palabra "transformador", una palabra que había sido acuñada por Bláthy Ottó.
En 1885, George Westinghouse compro las patentes del ZBD y las de Gaulard y Gibbs. Él le encomendó a William Stanley la construcción de un transformador de tipo ZBD para uso comercial.
Este diseño se utilizó por primera vez comercialmente en 1886.

TIPOS DE TRANSFORMADORES


Según sus aplicaciones


ü Transformador elevador/reductor de voltaje

Son empleados por empresas transportadoras eléctricas en las subestaciones de la red de transporte de energía eléctrica, con el fin de disminuir las pérdidas por efecto Joule. Debido a la resistencia de los conductores, conviene transportar la energía eléctrica a tensiones elevadas, lo que origina la necesidad de reducir nuevamente dichas tensiones para adaptarlas a las de utilización.

ü Transformador de aislamiento
Proporciona aislamiento galvánico entre el primario y el secundario, de manera que consigue una alimentación o señal "flotante". Suele tener una relación 1:1. Se utiliza principalmente como medida de protección, en equipos que trabajan directamente con la tensión de red. También para acoplar señales procedentes de sensores lejanos, en equipos de
electromedicina y allí donde se necesitan tensiones flotantes entre sí.

ü Transformador de alimentación
Pueden tener una o varias bobinas secundarias y proporcionan las tensiones necesarias para el funcionamiento del equipo. A veces incorporan
fusibles que cortan su circuito primario cuando el transformador alcanza una temperatura excesiva, evitando que éste se queme, con la emisión de humos y gases que conlleva el riesgo de incendio. Estos fusibles no suelen ser reemplazables, de modo que hay que sustituir todo el transformador.

ü Transformador trifásico
ü Tienen tres bobinados en su primario y tres en su secundario. Pueden adoptar forma de estrella (Y) (con hilo de neutro o no) o delta (Δ) y las combinaciones entre ellas: Δ-Δ, Δ-Y, Y-Δ y Y-Y. Hay que tener en cuenta que aún con relaciones 1:1, al pasar de Δ a Y o viceversa, las tensiones de fase varían.

ü Transformador de pulsos
Es un tipo especial de transformador con respuesta muy rápida (baja
autoinducción) destinado a funcionar en régimen de pulsos y además de muy versátil utilidad en cuanto al control de tensión 220.
ü Transformador de línea o flyback
Es un caso particular de transformador de pulsos. Se emplea en los televisores con TRC (
CRT) para generar la alta tensión y la corriente para las bobinas de deflexión horizontal. Además suele proporcionar otras tensiones para el tubo (foco, filamento, etc.). Además de poseer una respuesta en frecuencia más alta que muchos transformadores, tiene la característica de mantener diferentes niveles de potencia de salida debido a sus diferentes arreglos entre sus bobinados secundarios.

ü Transformador con diodo dividido
Es un tipo de transformador de línea que incorpora el
diodo rectificador para proporcionar la tensión contínua de MAT directamente al tubo. Se llama diodo dividido porque está formado por varios diodos más pequeños repartidos por el bobinado y conectados en serie, de modo que cada diodo sólo tiene que soportar una tensión inversa relativamente baja. La salida del transformador va directamente al ánodo del tubo, sin diodo ni triplicador.

ü Transformador de impedancia
Este tipo de transformador se emplea para adaptar
antenas y líneas de transmisión (tarjetas de red, teléfonos, etc.) y era imprescindible en los amplificadores de válvulas para adaptar la alta impedancia de los tubos a la baja de los altavoces. Si se coloca en el secundario una impedancia de valor Z, y llamamos n a Ns/Np, como Is=-Ip/n y Es=Ep.n, la impedancia vista desde el primario será Ep/Ip = -Es/n²Is = Z/n². Así, hemos conseguido transformar una impedancia de valor Z en otra de Z/n². Colocando el transformador al revés, lo que hacemos es elevar la impedancia en un factor n².

ü Estabilizador de tensión
Es un tipo especial de transformador en el que el núcleo se satura cuando la tensión en el primario excede su valor nominal. Entonces, las variaciones de tensión en el secundario quedan limitadas. Tenía una labor de protección de los equipos frente a fluctuaciones de la red. Este tipo de transformador ha caído en desuso con el desarrollo de los reguladores de tensión electrónicos, debido a su volumen, peso, precio y baja eficiencia energética.

ü Transformador híbrido o bobina híbrida
Es un transformador que funciona como una
híbrida. De aplicación en los teléfonos, tarjetas de red, etc.

ü Balun
Es muy utilizado como
balun para transformar líneas equilibradas en no equilibradas y viceversa. La línea se equilibra conectando a masa la toma intermedia del secundario del transformador.

ü Transformador electrónico
Esta compuesto por un circuito electrónico que eleva la frecuencia de la corriente eléctrica que alimenta al transformador, de esta manera es posible reducir drásticamente su tamaño. También pueden formar parte de circuitos más complejos que mantienen la tensión de salida en un valor prefijado sin importar la variación en la entrada, llamados
fuente conmutada.

ü Transformador de frecuencia variable
Son pequeños transformadores de núcleo de hierro, que funcionan en la banda de audiofrecuencias. Se utilizan a menudo como dispositivos de acoplamiento en circuitos electrónicos para comunicaciones, medidas y control.
ü Transformadores de medida
Entre los transformadores con fines especiales, los más importantes son los transformadores de medida para instalar instrumentos, contadores y relés protectores en circuitos de alta tensión o de elevada corriente. Los transformadores de medida aíslan los circuitos de medida o de relés, permitiendo una mayor normalización en la construcción de contadores, instrumentos y
relés.

SEGÚN SU CONSTRUCCIÓN


Transformador de grano orientado

Autotransformador
Artículo principal:
Autotransformador
El primario y el secundario del transformador están conectados en serie, constituyendo un bobinado único. Pesa menos y es más barato que un transformador y por ello se emplea habitualmente para convertir 220 V a 125 V y viceversa y en otras aplicaciones similares. Tiene el inconveniente de no proporcionar aislamiento galvánico entre el primario y el secundario.

ü Transformador toroidal
Pequeño transformador con núcleo toroidal.
El bobinado consiste en un anillo, normalmente de compuestos artificiales de ferrita, sobre el que se bobinan el primario y el secundario. Son más voluminosos, pero el flujo magnético queda confinado en el núcleo, teniendo flujos de dispersión muy reducidos y bajas pérdidas por
corrientes de Foucault.

ü Transformador de grano orientado
El núcleo está formado por una chapa de hierro de grano orientado, enrollada sobre sí misma, siempre en el mismo sentido, en lugar de las láminas de hierro dulce separadas habituales. Presenta pérdidas muy reducidas pero es caro. La chapa de hierro de grano orientado puede ser también utilizada en transformadores orientados (chapa en E), reduciendo sus pérdidas.

ü Transformador de núcleo de aire
En aplicaciones de alta frecuencia se emplean bobinados sobre un carrete sin núcleo o con un pequeño cilindro de
ferrita que se introduce más o menos en el carrete, para ajustar su inductancia.

ü Transformador de núcleo envolvente
Están provistos de núcleos de ferrita divididos en dos mitades que, como una concha, envuelven los bobinados. Evitan los flujos de dispersión.

ü Transformador piezoeléctrico
Para ciertas aplicaciones han aparecido en el mercado transformadores que no están basados en el flujo magnético para transportar la energía entre el primario y el secundario, sino que se emplean vibraciones mecánicas en un cristal
piezoeléctrico. Tienen la ventaja de ser muy planos y funcionar bien a frecuencias elevadas. Se usan en algunos convertidores de tensión para alimentar los fluorescentes del backlight de ordenadores portátiles.
MARCAS DE TRANSFORMADORES
NACIONAL DE TRANSFORMADORES TELSA: http://www.tesla.com.co
VIDEOS